Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 16(4): e20401, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37903749

RESUMO

Discovery and analysis of genetic variants underlying agriculturally important traits are key to molecular breeding of crops. Reduced representation approaches have provided cost-efficient genotyping using next-generation sequencing. However, accurate genotype calling from next-generation sequencing data is challenging, particularly in polyploid species due to their genome complexity. Recently developed Bayesian statistical methods implemented in available software packages, polyRAD, EBG, and updog, incorporate error rates and population parameters to accurately estimate allelic dosage across any ploidy. We used empirical and simulated data to evaluate the three Bayesian algorithms and demonstrated their impact on the power of genome-wide association study (GWAS) analysis and the accuracy of genomic prediction. We further incorporated uncertainty in allelic dosage estimation by testing continuous genotype calls and comparing their performance to discrete genotypes in GWAS and genomic prediction. We tested the genotype-calling methods using data from two autotetraploid species, Miscanthus sacchariflorus and Vaccinium corymbosum, and performed GWAS and genomic prediction. In the empirical study, the tested Bayesian genotype-calling algorithms differed in their downstream effects on GWAS and genomic prediction, with some showing advantages over others. Through subsequent simulation studies, we observed that at low read depth, polyRAD was advantageous in its effect on GWAS power and limit of false positives. Additionally, we found that continuous genotypes increased the accuracy of genomic prediction, by reducing genotyping error, particularly at low sequencing depth. Our results indicate that by using the Bayesian algorithm implemented in polyRAD and continuous genotypes, we can accurately and cost-efficiently implement GWAS and genomic prediction in polyploid crops.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Estudo de Associação Genômica Ampla/métodos , Teorema de Bayes , Genótipo , Genômica/métodos , Poliploidia
2.
G3 (Bethesda) ; 10(7): 2465-2476, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32457095

RESUMO

Miscanthus is a perennial grass with potential for lignocellulosic ethanol production. To ensure its utility for this purpose, breeding efforts should focus on increasing genetic diversity of the nothospecies Miscanthus × giganteus (M×g) beyond the single clone used in many programs. Germplasm from the corresponding parental species M. sinensis (Msi) and M. sacchariflorus (Msa) could theoretically be used as training sets for genomic prediction of M×g clones with optimal genomic estimated breeding values for biofuel traits. To this end, we first showed that subpopulation structure makes a substantial contribution to the genomic selection (GS) prediction accuracies within a 538-member diversity panel of predominately Msi individuals and a 598-member diversity panels of Msa individuals. We then assessed the ability of these two diversity panels to train GS models that predict breeding values in an interspecific diploid 216-member M×g F2 panel. Low and negative prediction accuracies were observed when various subsets of the two diversity panels were used to train these GS models. To overcome the drawback of having only one interspecific M×g F2 panel available, we also evaluated prediction accuracies for traits simulated in 50 simulated interspecific M×g F2 panels derived from different sets of Msi and diploid Msa parents. The results revealed that genetic architectures with common causal mutations across Msi and Msa yielded the highest prediction accuracies. Ultimately, these results suggest that the ideal training set should contain the same causal mutations segregating within interspecific M×g populations, and thus efforts should be undertaken to ensure that individuals in the training and validation sets are as closely related as possible.


Assuntos
Genômica , Melhoramento Vegetal , Diploide , Genótipo , Humanos , Fenótipo , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...